Supplemental Material

Air pollution control and the occurrence of acute respiratory illness in school children of Quito, Ecuador.

Bertha Estrella, Fernando Sempértegui, Oscar H. Franco, Magda Cepeda, Elena N. Naumova

1. Weather description

While the general climate of Ecuador is hot and subtropical, the climate of Quito, the national capital, is defined by its mountainous location. The city is situated 2850m above the sea level in the Andean Region. While the monthly temperatures are stable throughout the year averaging \sim 15°C, the season are defined by precipitation. The dry (summer) season generally extends from June to September with the rest of the months reserved for rainy (winter) season (Table S1).

Table S1. Monthly average meteorological characteristics for 2000 and 2007.

	2000		2007	
		Monthly		Monthly
		Average		Average
	Monthly	Shade air	Monthly	Shade air
	Precip	temperature	Precip	temperature
Month	sum	(°C)	sum	(°C)
Jan	177.3	13.6	62.2	16.0
Feb	165.8	13.4	67.5	15.4
Mar	149.5	13.9	177.2	15.0
Apr	187.6	14.1	188.1	14.8
May	123.8	14.1	101.0	15.3
Jun	66.4	14.6	22.2	15.3
July	22.1	14.6	12.5	15.6
Aug	9.7	15.3	33.4	15.2
Sep	67.3	14.2	3.0	16.1
Oct	43.6	15.5	160.1	14.5
Nov	16.7	14.6	197.4	14.9
Dec	0.0	13.8	0.0	14.0

Data from: National Institute of Meteorology and Hydrology (INAMHI). Anuario Climatológico 2007. Quito, Ecuador. Available at

www.serviciometeorologico.gob.ec/wp-content/uploads/anuarios/.../Am%202007.pdf

2. Model building for the relationship between ambient CO and COHb levels

The relationship between COHb levels and air quality on the day of and the day prior the blood draw was assessed by linear regression model. We included in the model individual characteristics (age, sex, underweight, stunting) and variables for the household sources of

indoor air pollution (indoor firewood use and smoking). We developed the model in a sequential manner, starting with the simple analysis of relationship between log(COHb) and CO (Table S2). We then gradually increased the model complexity by adding the individual covariates (Table S3), and two meteorological characteristics (Table S4). Table S4 is limited to the ambient measurements for the day prior to COHb measurements. Please note, that in absence of actual measurements for air quality in 2000 we use interpolated values of 4.5mg/m³ for daily CO level (Tables S2-S4).

Table S2. Regression models for log(COHb) measurement and CO ambient concentration for 2000 and 2007

	Beta	SE	<i>p</i> -value	
the c	lay of COHb mea	surements		
Constant	0.506	0.017	< 0.0001	
CO (mg/m ³)	0.145	0.007	< 0.0001	
the day prior to COHb measurements				
Constant	0.511	0.017	< 0.0001	
$CO (mg/m^3)$	0.144	0.007	< 0.0001	

Table S3. Adjusted regression models for log(COHb) measurement and CO)
ambient concentration for 2000 and 2007	

	2000 and 2007		
	Beta	SE	<i>p</i> -value
the day of	f COHb meası	urements	
Constant	0.787	0.076	< 0.0001
$CO (mg/m^3)$	0.127	0.008	< 0.0001
Age (year)	-0.024	0.008	0.002
Female	-0.037	0.021	0.082
Underweight ¹	-0.009	0.036	0.800
Stunted ²	-0.025	0.026	0.346
Indoor fire wood use	0.016	0.157	0.920
Indoor smokers	-0.058	0.026	0.027
$R^2 = 0.288$			
the day pric	or to COHb me	easurements	
Constant	0.787	0.076	< 0.0001
$CO (mg/m^3)$	0.127	0.008	< 0.0001
Age (year)	-0.023	0.008	0.002
Female	-0.039	0.021	0.067
Underweight ¹	-0.004	0.036	0.919
Stunted ²	-0.031	0.026	0.232
Indoor fire wood use	0.007	0.156	0.964

Indoor smokers	-0.063	0.008	< 0.0001

 $R^2 = 0.292$

¹Underweight was defined as weight for age Z score < -2SD

² Stunted was defined as height for age Z score < -2SD

Table S4. Adjusted regression adjusted Model for log(COHb) measurement and CO ambient concentration for 2000 and 2007

	2000 and 2007		
	Beta	SE	<i>p</i> -value
the day prior t	o COHb meası	irements	
Constant	-5.590	1.224	< 0.0001
CO (mg/m ³)	0.049	0.026	0.058
Age (year)	-0.021	0.007	0.005
Female	-0.021	0.021	0.317
Underweight ¹	0.009	0.035	0.788
Stunted ²	-0.028	0.025	0.276
Indoor fire wood use	0.002	0.150	0.988
Indoor smokers	-0.057	0.002	0.023
Ambient Temperature (°C)	0.358	0.710	< 0.0001
Precipitation (mm)	0.011	0.002	< 0.0001

 $R^2 = 0.345$

¹Underweight was defined as weight for age Z score < -2SD

² Stunted was defined as height for age Z score < -2SD

We then run a regression model for only 2007, which included actual measurements for available air pollutant (except for NO and O3 due to incomplete records) as well as for temperature and precipitation for the day prior to COHb measurements (Table S5). In contrast to model presented in Table S4, where the effect of CO is driven by the substantial decline of CO concentration, the relationship between COHb measurements and ambient CO levels were not significant.

Table S5. Adjusted regression model for log(COHb) measurement and ambient concentration for CO, SO₂ and PM_{2.5} measured on a day prior the COHb measurements for the 2007 study.

		2007	
	Beta	SE	p value
Constant	1.670	0.734	0.002
CO (mg/m ³)	-0.016	0.021	0.451
$SO_2 (\mu/m^3)$	-0.003	0.004	0.396
$PM_{2.5} (\mu/m^3)$	0.002	0.002	0.173

Age (year)	0.003	0.005	0.577
Female	0.018	0.014	0.190
Underweight ¹	-0.003	0.022	0.904
Stunted ²	-0.013	0.016	0.404
Indoor fire wood use	0.158	0.126	0.212
Indoor smokers	-0.012	0.017	0.472
Ambient Temperature (°C)	-0.037	0.046	0.425

 $R^2 = 0.012$

¹Underweight was defined as weight for age Z score < -2SD

² Stunted was defined as height for age Z score < -2SD

3. Model building for the relationship between ambient CO and COHb levels and respiratory illness

We constructed a Poisson regression model for ARI occurrence for 2000 and 2007 with COHb level and CO concentration values (same day) and adjusted for individual covariates. Only COHb levels are significant associated with number of episodes of ARI (Table S6).

	2000 and 2007		
	Exp (Beta)	95 CI	p value
the	day of COHb me	easurements	
Constant	0.645	0.344-1.208	0.170
COHb (%)	1.215	1.125-1.314	< 0.0001
$CO (mg/m^3)$	0.992	0.923-1.065	0.821
Age/year	0.947	0.892-1.005	0.073
Female	1.060	0.900-1.249	0.488
Underweight ¹	1.060	0.813-1.382	0.669
Stunted ²	1.188	0.976-1.447	0.086
Indoor fire wood use	1.648	0.678-4.003	0.270
Indoor smokers	1.102	0.908-1.337	0.326

Table S6. Adjusted Poisson regression model for ARI (number of episodes) and COHb concentration for 2000 and 2007

¹Underweight was defined as weight for age Z score < -2SD

² Stunted was defined as height for age Z score < -2SD

4. Model building for the relationship between ambient CO, SO₂ and PM_{2.5} levels and respiratory illness in 2007.

We constructed a Poisson regression model for ARI occurrence for 2007 with CO, SO₂ and PM_{2.5} concentration values (same day of COHb measurements) and adjusted for individual covariates. CO, SO₂ levels were significantly associated with the number of episodes of ARI (Table S7).

	2007	
	RR (95% CI)	P-value
$CO (mg/m^3)^1$	1.56 (1.17-2.08)	0.002
$SO_2 (\mu g/m^3)^1$	1.10 (1.04–1.16)	>0.0001
$PM_{2.5} (\mu g/m^3)^1$	0.98 (0.95–1.01)	0.060
Age/year	0.91(0.85-0.09)	0.007
Female	1.06 (0.89–1.27)	0.469
Underweight ²	1.20 (0.98–1.47)	0.472
Stunted ³	1.17 (0.96–1.44)	0.066
Indoor fire wood	0.62(0.14, 2.76)	0.539
use	0.02(0.14-2.70)	
Indoor smokers	1.14 (0.93–1.39)	0.186

Table S7. Adjusted Poisson regression model for ARI (number of episodes) and air pollutants in 2007

Rate Ratio (RR) - results from the Log-linear Poisson Generalized Estimating Equation model

¹Continuous variable on the day of COHb measurement ²Underweight was defined as weight for age Z score <-

2SD

 3 Stunted was defined as height for age Z score < -2SD