Advanced Data Analysis

Course Details

Course Number
NUTR 394
Associated Faculty

Course Description

This project-based course capitalizes on student interests to formulate research questions with understanding of data limitations, conduct multi staged data analysis, and select proper data visualization and graphical representation tools. Students will learn advanced modern analytical tools and techniques essential for analysis in a variety of disciplines such as Climate, Environment, Nutrition and Health applications (knowledge of only one of these disciplines. This course also covers research design, the scientific method, data quality and validity, data management, and research ethics in data analysis. Students should attempt to identify data sets relevant to their specific interests prior to the course. Instructor will approve data set suitability. If students cannot identify appropriate datasets, the instructor will provide a dataset. Designated time outside of the classroom is required for each student to work with the team partner to provide and receive feedback on homework assignments. This course is cross-listed with CEE Special Topics.

Prerequisites

Students should have basic working knowledge of statistical methods in environmental and/or nutrition research and epidemiology. Recommended courses that cover those topics include: Biostatistics I and II (NUTR 0206/NUTR 0309) or Statistical Methods in Nutrition Research and Regression Analysis for Nutrition Policy (NUTR 0207/NUTR 0307) or equivalent. Ability to analyze data by use of R is preferable, but students may utilize other statistical programs as long as those programs are sufficient for the analysis that is proposed. This course is cross-listed with CEE Special Topics.

Terms Offered

Semester/Term SIS Number Meeting Time Location Instructors
Fall 2018 81421 Monday 4:45pm - 7:30pm Jaharis 156 Elena N. Naumova
Swipe left / right to see all details.
There is no content to display.

Whoops. Something is wrong here. You shouldn't being seeing this. Please try to load the page again.